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Abstract

In many species, the introduction of double-stranded RNA
induces potent and specific gene silencing, referred to as
RNA interference. This phenomenon, which is based on tar-
geted degradation of mMRNAs and occurs in almost any eu-
karyote, from trypanosomes to mice including plants and
fungi, has sparked general interest from both applied and
fundamental standpoints. RNA interference, which is cur-
rently used to investigate gene function in a variety of sys-
tems, is linked to natural resistance to viruses and transpo-
son silencing, as if it were a primitive immune system
involved in genome surveillance. Here, we review the mech-
anism of RNA interference in post-transcriptional gene si-
lencing, its function in nature, its value for functional genom-
ic analysis, and the modifications and improvements that
may make it more efficient and inheritable. We also discuss
the future directions of this versatile technique in both funda-
mental and applied science.
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Resum

En moltes especies, la introduccié de RNAs de doble cade-
na indueix un silenciament genic molt especific i potent,
anomenat interferéncia induida per RNA. Aquest fenomen,
basat en la degradacio dirigida de mRNAs, es produeix en
gairebé tots els eucariotes, des de tripanosomes a ratolins,
incloent-hi fongs i plantes. Les seves possibles aplicacions
en ciencia basica i aplicada han despertat un interes gener-
al. La interferencia induida per RNA, que actualment s’em-
pra per investigar la funcié genica en sistemes molt diver-
s0s, esta relacionada amb la resisténcia natural a virus i al
silenciament de transposons, com si fos un sistema immuni-
tari primitiu implicat en la vigilancia i control del genoma. En
aquest article, fem una revisié dels mecanismes d’actuacio
del silenciament génic postranscripcional induit per la inter-
ferencia de RNA, de la seva funcié a la natura, de la im-
portancia que té la seva aplicacié en estudis de genomica
funcional i de les modificacions i millores que el fan més
efectiu i heretable, i discutim les perspectives de futur
d’aquesta técnica tan versatil en ciencia basica i aplicada.

When double-stranded RNA (dsRNA) from sense and anti-
sense sequences of an endogenous MRNA is introduced
into a cell of almost all eukaryotes, the sequence-corre-
sponding mRNA is degraded and the gene is silenced [1-3].
This post-transcriptional gene silencing (PTGS) was first dis-
covered by Guo and Kempues in the nematode Caenorhab-
ditis elegans [4]. To describe this phenomenon, Fire and co-
workers coined the term RNA interference (RNAI) [5]. Their
discovery was based on the puzzlinaz g observation that
sense and antisense RNA were equally effective in sup-
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pressing specific gene expression [4]. Further research re-
vealed that the active agent was small amounts of dsRNA
that usually contaminate DNA transcription of both sense
and antisense RNAs in vitro [5]. RNAIi has since been found
to be effective in a wide variety of animals, including try-
panosomes [6-8], hydra [9], platyhelminths [10-12, work in
progress], nematodes [5, 13-16], insects [8, 12, 17-19], ze-
brafish [20, 21], Xenopus [22], chicken [work in progress]
and mice [23, 24], and it may be associated with gene si-
lencing in plants («co-suppression») [25-28] and fungi
(«quelling») [29-31].

RNAI is a powerful new tool that provides geneticists and
molecular biologists of very diverse fields another approach
to the study of gene function as an alternative to loss-of-func-
tion transgenics. However, RNAI function, if it is to be stably
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inherited, needs the creation of a transgenic organism carry-
ing a transgene with both sense and antisense information.

Mechanism of RNAi post-transcriptional gene
silencing

Experimental aspects

Before discussing the proposed mechanism for RNAi gene
silencing, several aspects of RNAi experimental design
should be considered. To produce an RNAI effect by means
of PTGS, the dsRNA introduced into the organism should
contain exonic sequences of the gene whose expression is
to be disrupted, as the rapid maturation of heterogeneous
nuclear RNAs (hnRNAs) does not allow dsRNA intronic se-
qguences to silence the corresponding gene [5]. However, in
the plant Arabidopsis, the introduction of dsRNA from the
promoter causes DNA methylation in the promoter of the
corresponding gene [32], which leads to the inhibition of its
expression by transcriptional gene silencing (TGS) [1]). The
RNAIi process is homology-dependent and so the se-
quences to be included in the dsRNA should be carefully se-
lected to avoid interference between homologous se-
quences of related genes [10].

The delivery system of the dsRNA may vary among or-
ganisms. Whereas microinjection is suitable for introducing
dsRNA into the germ line or into early embryos of multicellu-
lar eukaryotes (zebrafish, Xenopus, chicken and mice) [21,
23, 24, work in progress], and in whole or regenerating or-
ganisms (nematodes and platyhelminths) [5, 33, work in
progress], electroporation is more effective in simpler organ-
isms (trypanosomes and hydra) [6, 22]. Moreover, dsRNA
can be introduced into the nematode C. elegans by feeding
the organisms with food mixed with dsRNA or producing the
desired dsRNA (i.e. expressed by the feeding bacteria), or
by simply soaking them in a medium containing dsRNA [34,
35].

Another aspect to be considered is the dilution of the dsR-
NA when it is introduced into the organism, as it spreads to
most tissues. Moreover, when introduced into early em-
bryos, dsRNA is diluted as cells steadily divide during devel-
opment. This may not be a problem for small organisms, but
it can be a limiting factor in more complex organisms. In-
deed, dilution of dsRNA may explain the variable pene-
trance of phenotypes observed after RNAi with some genes
in Drosophila [10], zebrafish [21] and chicken [work in
progress] (Figure 2). However, RNAi may also involve ampli-
fication of the dsRNA signal by an RNA-dependent RNA
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Figure 1. Proposed model in which the degradation of the mRNA by RNAI is catalysed by a hypothetical enzyme that contains a dsRNA bind-
ing domain, a ribonuclease domain and a helicase domain. Modified from [3].
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Figure 2. Diagram showing the link between natural virus resistance, transposon silencing, RNAi in animals, PTGS co-suppression in plants

and quelling in fungi.

polymerase (RARP), whose activity may delay the effect of
the dilution [29, 36]. Generally, the higher the amount of
dsRNA introduced, the more effective is the PTGS [2, 37].
However, relatively small quantities of dsRNA can degrade
vast amounts of the corresponding mRNA [5].

dsRNA sequence determines the cleavage sites

of the mRNA

RNAI is active mainly in cytoplasm [6, 10], but it can also af-
fect nuclear transcripts [38]. Although the precise mecha-
nism of RNAI is unknown, the involvement of permanent
gene modification and the disruption of transcription have
been ruled out experimentally [15]. It is generally accepted
that RNAI in animals, PTGS co-suppression in plants and
quelling in fungi are post-transcriptional, targeting RNA tran-
scripts for degradation [15, 39]. By using three different
dsRNAs from a single gene, it has been shown that the
cleavage sites of the RNA transcripts are precisely deter-
mined by the sequence of the dsRNA [40]: each of the three
dsRNAs produced a ladder of bands corresponding to a set
of MRNA cleavage products characteristic of that particular
dsRNA.

A specific nuclease cleaves both sense and antisense
strands of the dsRNA into small pieces of 21-25 nucleotides
(21— 25-mers) both in vivo and in vitro (cell-free system) [3,
37, 39-44]. Moreover, the mRNA is degraded at specific
sites, spaced 21-23 nucleotides apart, suggesting that the
cleavage is templated by the small pieces of dsRNA. How-
ever, each individual mRNA is cleaved only once or twice
along its entire sequence [40]. The cleavage of the mRNA is

unaffected by several translation inhibitors but it is ATP-de-
pendent, suggesting the involvement of specific enzymes.

The above data have led to a model in which the degra-
dation of the mRNA by RNAI is catalysed by a hypothetical
enzyme that contains a dsRNA binding domain, a ribonucle-
ase domain and a helicase domain [3, 40] (Figure 1). In this
model, the dsRNA is bonded to the hypothetical enzyme
(dsRNA binding domain) and degraded to ~23-mers (nucle-
ase activity), and the small dsRNA pieces remain bonded to
the enzyme. Thereafter, these small dsRNA pieces template
sequence-specific cleavage of the mRNA (nuclease activi-
ty), replacing the sense strand of the ~23-mers with the
mMRNA strand (helicase activity). The dsRNA is regenerated
and so after targeting mRNA for degradation, it is ready to
template the next round of mMRNA degradation. The regener-
ation of the small dsRNA pieces after mMRNA degradation ex-
plains why relatively small amounts of dsRNA degrade vast
amounts of the corresponding mRNA.

Genes involved in RNAI

Genetic screens in both the nematode C. elegans and the
fungus Neurospora have identified genes required for RNAI,
but the scenario is rather incomplete and the genetic mecha-
nism of RNAJ in animals, PTGS co-suppression in plants and
quelling in fungi is unclear. RNAi-resistant mutants and the
genes involved can be classified in several categories. In the
nematode C. elegans, some of these genes, including rde-2,
rde-3, mut-2 and mut-7, when mutated, result in the mobilisa-
tion of transposons [45-47], suggesting that the machinery
involved in the two processes is linked (see below, RNAI in
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nature; Figure 2). Another subset of genes, including rde-1
and rde-4, is required for the initiation of inheritable RNAI [47]
(see below, Heredity of RNAI). It has been shown that rde-2
and mut-7 are required downstream in the tissue where inhi-
bition occurs. rde-1 and rde-4 may respond to dsRNA by
producing a secondary extragenic agent that is used by the
downstream genes rde-2 and mut-7 to target specific mR-
NAs for PTGS. That is, rde-1and rde-4 may be the initiators of
RNAi and rde-2and mut-7 may be the effectors.

As for the hypothetical enzyme mentioned above, the
characteristics of the small nucleotide pieces (~23 mers)
suggest they were generated by RNase Il or a closely relat-
ed enzyme, as this is the only identified nuclease known to
cleave dsRNA at specific sites, spaced <22 nucleotides [48,
49]. However, RNase Ill does not bind dsRNA fragments. In-
terestingly, open reading frames (ORF) in metazoa with
RNase Il and helicase domains, and dsRNA binding motifs
have been found [48]. These ORF may correspond to that
hypothetical enzyme. In the same way, mut-7 from the ne-
matode C. elegans is homologous to RNase D [45].

In the fungus Neurospora, the gde-3 gene, a member of
the RecQ DNA helicase family, may be an example of an ini-
tiation gene for fungi quelling [30]. It is relevant that most
genes whose products are involved in RNAI have their ho-
mologous genes in other metazoa in which RNAI has been
successfully tested, like the fly Drosophila and the plant Ara-
bidopsis [2]. For example, the gene rde-1 from the nema-
tode C. elegans is homologous to gene gde-2 from the fun-
gus Neurospora and to the gene ago-71 from the plant
Arabidopsis, all of which are involved in their respective
PTGS [50]. This points to common mechanisms for RNAI in
animals, co-suppression in plants and quelling in fungi,
which must have appeared before the evolutionary split of
these groups.

Heredity of RNAI

One of the limitations to the use of injected, fed or electropo-
rated dsRNA for RNAI is that descendants do not inherit it.
The only reported partial exception is C. elegans, in which
injected dsRNA leads to heritable gene silencing in the F2
generation and beyond [47]. This requires the above-men-
tioned genes rde-1 and rde-4 [47]. This limitation can be
overcome by expressing dsRNA as an extended hairpin-
loop RNA. The hairpin-RNA is expressed from a transgene
exhibiting dyad symmetry in a controlled temporal and spa-
tial pattern, under the control of a strong, heat-shock-in-
ducible promoter. This approach has recently generated
RNAI in the nematode C. elegans, in the fly Drosophila
melanogaster and in the plant Arabidopsis thaliana [51-53].
It should be applicable to any organism in which RNAi is ef-
fective and the generation of transgenic organisms techni-
cally possible.

RNAi is linked to chromosome methylation

In several plant systems, RNA-triggered gene silencing is
accompanied by DNA methylation. This process may be as-
sociated with PTGS. Three models of DNA methylation-PTGS

have been postulated [1]: (1) DNA methylation is completely
distinct from PTGS and it results from an independent inter-
action between the interfering RNA and the template DNA;
(2) there is some kind of causal relationshipbetween RNA-
triggered methylation of DNA causing aberrant transcription
and the resulting transcripts inducing PTGS; and (3) con-
versely, the methylation of target DNA sequences may result
from PTGS. As mentioned above, the introduction of dsRNA
from gene promoters in Arabidopsis causes DNA methyla-
tion in the promoter of the corresponding genes [32], sug-
gesting that methylation and PTGS are related gene-silenc-
ing phenomena, perhaps sharing part of the machinery.

RNAi self-propagation

RNAI is characterised by crossing cell boundaries and
spreading throughout the organism [5] and, in some cases,
to subsequent generations via a dominant extragenic agent,
possibly the ~23-mers dsRNA molecules, as mentioned
above [47]. However, the RNAI from introduced dsRNA is
not maintained forever, probably because cell division and
degradation dilute dsRNA. Yet small amounts of dsRNA can
target the degradation of many corresponding mRNAs, as
revealed by calculations of the dilution of introduced dsRNA
[5]. As mentioned above, in the mechanism proposed for
RNAI [3, 40] (Figure 1), the ~23-mers dsRNA fragments are
regenerated after each round of mRNA cleavage, which
may explain why RNAi behaves as a catalyst.

Two genes involved in PTGS, gde-1 in the fungus Neurospo-
ra [30] and ego-1 in the nematode C. elegans [36], are ho-
mologous to a tomato gene that displays a RNA-dependant
RNA-polymerase (RdRP), which suggests that RNAi may
also involve amplification of the dsRNA signal by an RdRP.
With the available data, both dsRNA regeneration and RdRP
amplification may account for RNAI self-propagation.

RNAi in nature

RNAI has been poetically described as «a genetic wand and
a genetic watchdog» [2]. Genetic wand refers to its potential
for functional genomic analysis, and genetic watchdog
refers to its function in nature. dsRNA is not a requisite prod-
uct of normal gene expression but it is produced, at least
transiently, by many viruses and transposons. This dsRNA is
not associated with normal gene expression, and it is used
by the organism to recognise potentially dangerous situa-
tions, to which the organism responds by blocking the ex-
pression of the potentially harmful RNAs.
Studies in plants strongly implicate PTGS as an antiviral
mechanism [reviewed in 1] (Figure 2). Viral RNAs can be tar-
gets for PTGS [26], whose effects are spread among cells
by direct dissemination of interfering RNA, as described in
the nematode C. elegans during RNAI [5, 54]. Moreover,
some viruses produce specific proteins that interfere with
PTGS to overcome this defensive mechanism [55].

In addition, some of the genes involved in RNAI in the ne-
matode C. elegans (rde-2, rde-3, mut-2 and mut-7), when



RNA interference: a new and powerful tool for functional genomic analysis

27

mutated, allow the mobilisation of transposons. Thus, their
wild-type function may be linked to transposon silencing in
this organism [45-47]. This suggests that dsRNA-based
PTGS is a general mechanism that controls the mobilisation
of these mobile elements and their subsequent spreading
throughout the genome (Figure 2).

This is also the basis for plant co-suppression and fungi
quelling. These two PTGS phenomena are observed in
transgenic plants and fungi, as transgenes can be regarded
as foreign genetic objects, like viruses and transposons. In
these cases, transgenes can induce their own silencing and
simultaneously silence the homologous endogenous gene
[66-58]. Recently, two Arabidopsis genes, sgs2 and sgs3,
necessary for both plant PTGS co-suppression and natural
virus resistance, have been isolated. Sgs2 is similar to an
RdRP from the fungus Neurospora crassa (qde-1), which
controls quelling, and to ego-1 from the nematode C. ele-
gans, which controls RNAI [59].

In summary, RNAI in nature may be a primitive immune
system involved in genome surveillance, a general mecha-
nism that limits aberrant or unwanted gene expression, de-
veloped to allow the genome of an organism to survive in a
hostile environment with foreign genetic objects (like trans-
posons and viruses).

RNAI as a tool for functional genomic analysis

The ability of dsRNA to silence gene expression through
RNA-mediated genetic interference mechanisms is used by
geneticists and molecular biologists for functional genomic
analysis in a great and growing variety of organisms. RNA|
has been successfully applied in plants, Trypanosome, and
several invertebrates and vertebrates.

RNAi in plants

RNAI has been used in various plant species, like Nicotiana
tabacum, Oryza sativa and Arabidopsis thaliana [27, 52]. In
the first two, it was used to demonstrate the link between
RNAI gene silencing and virus resistance [27], whereas in
the latter, it was used to analyse the function of four genes
involved in floral formation (agamous, clavata3, apetalal
and perianthia) [52]. A genetically engineered DNA coding
for RNA capable of duplex formation (dsRNA) was intro-
duced into the genome of Arabidopsis by Agrobacterium-
mediated transformation, which caused specific and herita-
ble genetic interference.

RNAi in trypanosomes

In Trypanosome, transfection of cells with a-tubulin 5’ un-
translated region (5 UTR) dsRNA, resulted in the formation
of multinucleated cells as a result of the specific block of cy-
tokinesis [6]. Analysis of cytoskeletal structures from these
trypanosomes revealed defects in the microtubules of the
flagellar axoneme and attachment zone, a complex cortical
structure that may be essential for establishing the path of
the cleavage furrow at cytokinesis. More recently, it has

been shown that genetic interference in Trypanosome by
dsRNA can be achieved in a heritable and inducible fashion
by transgenesis, introducing into the genome a construct
expressing the dsRNA in the form of stem-loop structure un-
der the control of a tetracycline-inducible promoter [7, 60].

RNAi in invertebrates

The metazoa in which RNAIi has been most used are, by far,
invertebrates: hydra, platyhelminths, nematodes and in-
sects. In Hydra [9], dsRNA-mediated interference demon-
strated the role of ks7in head development, introducing the
dsRNA into polyps by electroporation.

In platyhelminths, RNAI has been used in leech [12] and
planaria. In the latter, the effectiveness of RNAi was first re-
vealed by analysis of the specific effects of myosin, a-tubulin
and opsin dsRNAs on regenerating and adult organisms
[33]. As there is no available technique for transgenesis in
these organisms [61], the use of RNAi is the only way to gen-
erate loss-of-function mutants for the study of gene function
[33]. dsRNA-dependent gene silencing has recently been
used to analyse the function of the sine oculis planarian
gene (Gtsix-1), involved in the genetic cascade of eye for-
mation in flies and vertebrates, and of planarian photorecep-
tors during head regeneration [11]. This study has corrobo-
rated the evolutionary conservation of the initial eye genetic
pathway in invertebrates and vertebrates.

RNAIi has also been used in planarians to analyse the
function of newly discovered genes, not homologous with
any other known gene [62 and work in progress] (Figure 3).
It has been shown that tcen49, a gene involved in anterior-
posterior regionalisation of the planarian body [62-65], con-
tributes to the maintenance of gross planarian body regions
and, specifically, of the organs from the central body region,
i.e. the pharynx.

Among invertebrates, the group of metazoa in which
RNAI has been most used is, by far, the nematodes. As men-
tioned above, RNAi was first discovered in the nematode
Caenorhabditis elegans [4]. Apart from the studies aimed at
elucidating the mechanism of RNAI action, RNAi has been
extensively used in C. elegans to create loss-of-function mu-
tants of many genes involved in various cellular and devel-
opmental processes.

Of special interest is the huge work of functional genomic
analysis of C. elegans chromosomes | and Ill, whose genom-
ic sequences have been completed, by systematic RNAI [66,
67]. RNAIi was used to target nearly 90% of the predicted
genes of chromosome | [66], and function has been as-
signed to 13.9% of the genes analysed, thus increasing the
number of sequenced genes with known phenotypes from
70to 378. RNAI has also been used to target 96% of the pre-
dicted ORF of chromosome Il [67], in search for genes in-
volved in cell division. As ORF sequences do not directly as-
sign function to genes, RNAI could be used to elucidate the
function of predicted ORF in the distinct Genome Projects.

Finally, RNAi has been used to create loss-of-function
mutants of several genes involved in various cellular and de-
velopmental processes in several species of insects, like the
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Figure 3. RNAI in regenerating planarians. RNAi has been used to analyse the function of tcen49 [62-64], a new gene coding for a secreted
protein involved in anterior-posterior regionalisation of the planarian body that is not homologous to any other known gene. Regenerating tails
of 9 days of regeneration. Anterior is to the left, and dorsal to the top. Organisms were micro-injected with tcen49 dsRNA or water (negative
control) just after amputation following standard protocols [33], sacrificed after 9 days of regeneration, and analysed by immunohistochemistry
on paraffin sagittal sections using a monoclonal antibody specific to TCEN49 protein [63, 76]. A) Diagram showing the area of amputation
(dashed line) and the distribution of secreted TCEN49 protein (in dark yellow). A regenerate of 9 days is also shown. Note the structures and re-
gions newly regenerated (in grey) and the localisation of cells expressing tcen49 (in dark yellow), in a regeneration stage just starting TCEN49
secretion from tcen49 expressing cells (cianophylic secretory cells[63]). B) Negative control regenerate microinjected with water. The regen-
erate has built up a new pharynx and a new head, and TCEN49 is restricted to expressing cells of the central body region, including the phar-
ynx (dark blue staining). At this stage, TCEN49 starts to be secreted [63]. C) Regenerating tail micro-injected with tcen49 dsRNA. Note that the
gene is completely silenced, as no traces of the corresponding protein are detected after immunohistochemistry, and that the pharynx is ex-
pelled from the central region through the ventral side. Anterior region is mainly unaffected, but central and posterior regions seem to be fused.
The malformations in the central and posterior region started at day 9 of regeneration, when TCEN49 should start to be secreted, and the or-
ganism died shortly afterwards. These results suggest that tcen49 is critical for central body regional identity from day 9 on, and that in these
loss-of-function mutants, the central body region identity is replaced by posterior body regional identity [62, 63]. Abbreviation: e, eye; h, head;
ph, pharynx; t, tail. Scale bar: 0.5 mm.

fruit fly Drosophila [8, 10, 17], the fly Megarelia [19] and the quence of its genome has been completed, RNAi may be a
milkweed bug Oncopeltus fasciatus [18]. As Drosophila is powerful tool for analysing the function of predicted ORF, as
one of the genetically best-known organisms and the se- in nematodes.

Figure 4. RNAI in chicken embryos. The specific effect of dsRNA-mediated gene silencing in chicken was tested by injection of several dsR-
NAs in ovo. Embryos of 1.5-2 days of development (Hamburger and Hamilton stages 12-14) were micro-injected at various sites along the an-
terior-posterior axis with chicken fgf8 (Fibroblast Growth Factor — 8) dsRNA [77], planarian tcen49 dsRNA (see Figure 3) or Dulbecco’s Modi-
fied Eagle Medium (dsRNA solvent; DMEM). Microinjected embryos were analysed at several stages after microinjection (4-5 days of
development) by in situ hybridisation with fgf8 antisense riboprobe [77]. The head is to the top. A) Negative control embryo micro-injected with
DMEM. Development proceeded normally. Note the areas of fgf8 expression (arrowheads) [77]. B) Negative control embryo micro-injected
with planarian tcen49 dsRNA. Development proceeded normally. The presence of a dsRNA not homologous with any chicken gene did not
produce any morphological effect and did not silence fgf8 gene expression (arrowheads). C) Embryo micro-injected with chicken fgf8 dsRNA.
Regardless of the microinjection site, fgf8 gene expression was completely silenced in most embryos, although some variability was also ob-
served (not shown). At this stage, fgf8 should be expressed at discrete sites in the cephalic vesicles and rostrum, and in the apical ectodermal
ridge of wing and limb buds (see Figures 2A and 2B). Note the malformations produced by fgf8loss-of-function in the cephalic vesicles and the
rostrum, as described elsewhere [78-80]. Also note that wing and limb buds remain largely unaffected, probably owing to a redundant function
between fgf4 and fgf8, two distinct members of the fgf gene family that are coexpressed in these areas, promoting growth and patterning, and
that have been described as partially redundant [81-83]. Abbreviations: AER, apical ectodermal ridge; cv, cephalic vesicles; Ib, limb bud; r,
rostrum; wb, wing bud. Scale bar: 0.25 mm.
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RNAi in vertebrates

The specific ability of dsRNA to silence genes in vertebrates
has given rise to an intense debate, with some contradictory
reports [21, 68]. It is generally accepted that RNAI in verte-
brates degrades the corresponding mRNAs, with specific
loss-of-function effects. The presence of both multiple sites
for single-gene expression at various developmental stages
and of gene families with redundant functions in vertebrates,
which hinders the analysis of loss-of-function phenotypes,
may account for these contradictory reports [work in
progress]. dsRNA has been used to silence genes in ze-
brafish [20, 21, 68], Xenopus [22], chicken [69 and work in
progress] and mice [23, 24].

Generally, dsRNA is introduced by microinjection into
oocytes, 1-cell stage embryos or one cell of 2-cell stage em-
bryos, to target mRNAs involved in early developmental
stages [20-23, 68] and dormant maternal mRNAs [24]. How-
ever, dsRNA has been micro-injected in ovo of chicken at
several developmental stages, producing the phenotypic de-
fects associated with the corresponding loss-of-function mu-
tant (Figure 4) [69 and work in progress]. The adventage of in-
troducing dsRNA at later developmental stages is that the
interference does not affect former stages. The function of es-
sential genes for the embryos can thus be defined, while
avoiding the progressive accumulation of mutant pheno-
types that hinder the analysis of function at one specific point.
However, itis not yet possible to directly silence gene expres-
sion at a single site of the embryo by directed dsRNA microin-
jection, as RNAI effects spread all over the embryo, given its
remarkable ability to cross cell boundaries. RNAi is a power-
ful tool for interfering with gene expression in a wide range of
organisms, thus facilitating functional genomic analysis.

Future perspectives

Research on RNAI is growing rapidly and generating exciting
results in many fields, from screens to identify essential genes
for completion of the first cell cycle or early embryonic or germ-
line development [70] to elucidate the function of predicted
ORF in the distinct Genome Projects by systematic RNAI [66,
67]. RNAI is used as a general technique for determining gene
function [71]. This approach is very valuable for several rea-
sons. First, it provides the fastest link between sequence and
function. Second, homology-based cross-interference may
be useful to silence highly homologous and redundant genes
simultaneously. Finally, it allows comparison of the function of
homologous genes of distinct species that have not yet been
cloned, such as orthologous homeotic genes during the de-
velopment of distantly related species [72].

In addition, the link between RNAI, antiviral mechanisms
and transposon mobilisation may be extended to X-chromo-
some inactivation, imprinting and interferon response (Fig-
ure 2) [73-75]. Moreover, RNAI offers great economic and
therapeutic potential, both for agriculture, where it can im-
prove the response to viral infections and help develop
transgene/host association overriding gene silencing to al-

low the expression of proteins of interest, and for mammals,
in the fight against certain diseases like cancer and
virus/parasite infection. It will probably be regarded as one
of the major scientific breakthroughs of the end of the 2™
and the beginning of the 3™ millennium.

It has been recently reported the targeted degradation of
mRNAs in cultured mammalian cells by RNAI [84, 85], and
thatthe 21-25 ntlong dsRNAs (currently named smallinterfer-
ing RNAs; siRNAs) serve as primers to transform the target
mRNA into dsRNA by the action of a RNA-dependent RNA
polymerase (RARP) [86, 87, 88], which is degraded to elimi-
nate the targeted mRNA while generating new siRNA in a cy-
cle of dsRNA synthesis and degradation that leads to RNA..
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